skip to main content


Search for: All records

Creators/Authors contains: "Joyce, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how closely related, sympatric species distribute themselves relative to their environment is critical to understanding ecosystem structure and function and predicting effects of environmental variation. The Antarctic Peninsula supports high densities of krill and krill consumers; however, the region is warming rapidly, with unknown consequences. Humpback whales Megaptera novaeangliae and Antarctic minke whales Balaenoptera bonaerensis are the largest krill consumers here, yet key data gaps remain about their distribution, behavior, and interactions and how these will be impacted by changing conditions. Using satellite telemetry and novel spatial point-process modeling techniques, we quantified habitat use of each species relative to dynamic environmental variables and determined overlap in core habitat areas during summer months when sea ice is at a minimum. We found that humpback whales ranged broadly over continental shelf waters, utilizing nearshore bays, while minke whales restricted their movements to sheltered bays and areas where ice is present. This presents a scenario where minke whale core habitat overlaps substantially with the broader home ranges of humpback whales. While there is no indication that prey is limiting in this ecosystem, increased overlap between these species may arise as climate-driven changes that affect the extent, timing, and duration of seasonal sea ice decrease the amount of preferred foraging habitat for minke whales while concurrently increasing it for humpback whales. Our results provide the first quantitative assessment of behaviorally based habitat use and sympatry between these 2 krill consumers and offers insight into the potential effects of a rapidly changing environment on the structure and function of a polar ecosystem. 
    more » « less
  2. High harmonic spectroscopy utilizes the extremely nonlinear optical process of high-order harmonic generation (HHG) to measure complex attosecond-scale dynamics within the emitting atom or molecule subject to a strong laser field. However, it can be difficult to compare theory and experiment, since the dynamics under investigation are often very sensitive to the laser intensity, which inevitably varies over the Gaussian profile of a typical laser beam. This discrepancy would usually be resolved by so-called macroscopic HHG simulations, but such methods almost always use a simplified model of the internal dynamics of the molecule, which is not necessarily applicable for high harmonic spectroscopy. In this Letter, we extend the existing framework of macroscopic HHG so that high-accuracyab initiocalculations can be used as the microscopic input. This new (to the best of our knowledge) approach is applied to a recent theoretical prediction involving the HHG spectra of open-shell molecules undergoing nonadiabatic dynamics. We demonstrate that the predicted features in the HHG spectrum unambiguously survive macroscopic response calculations, and furthermore they exhibit a nontrivial angular pattern in the far field.

     
    more » « less
  3. Abstract

    We present a reproducible ab-initio method to produce benchmark tests between time-dependent Schrödinger equation (TDSE) in the single-active-electron approximation (SAE) and time-dependent density functional theory (TDDFT) in the highly nonlinear multiphoton and tunneling regime of strong-field physics. To this end we compare results for high-order harmonic generation from valence shells in atoms using the SAE-TDSE approach and TDDFT calculations. As key to the benchmark comparison we obtain an analytic form of SAE potentials based on density functional theory, which we applied for different atoms and ions. The ionization energies of atomic ground and excited states, as well as the energies of inner shells, for the SAE potentials agree well with experimental data. Using these potentials we find remarkable agreement between the results of the two independent numerical approaches (TDDFT and SAE-TDSE) for the high-order harmonic yields in helium, demonstrating the accuracy of the SAE potentials as well as the predictive power of SAE-TDSE and TDDFT calculations for the nonperturbative and highly nonlinear strong-field process of high harmonic generation in the ultraviolet and visible wavelength regime. Finally, as another application of the SAE potentials, high harmonic spectra from outer and inner valence shells are calculated and it is shown that unphysical artifacts in the SAE-spectra from the individual shells are removed once all the amplitudes are considered.

     
    more » « less